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The effect of mean compression or dilatation on the 
turbulence structure of supersonic boundary layers 
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It is now well known that the turbulence structure of thin shear layers can be 
strongly affected by the application of extra rates of strain in addition to the 
shear velocity gradient. Examples of such extra strain rates include lateral 
divergence or convergence, and streamline curvature in the plane of the mean 
shear. The changes in Reynolds stress are an order of magnitude larger than 
would be expected from the explicit extra terms in the Reynolds-stress transport 
equations, and therefore an order of magnitude larger than predicted by con- 
ventional calculation methods. In the present paper, one of a series on ‘complex’ 
turbulent flows, we show that bulk compression or dilatation (i.e. an extra strain 
rate divU) also appears to affect turbulent shear layers, typical values of 
Reynolds stress being increased by compression and decreased by dilatation. The 
fractional change in Reynolds stress is an order of magnitude larger than the 
fractional change in volume of a fluid element. The physical mechanism is 
probably analogous to that responsible for the large effects of divergence or con- 
vergence in incompressible flow. Because the phenomenon seems to be of great 
practical importance we discuss it in the context of engineering calculation 
methods. An empirical correction formula, analogous to those used to allow for 
divergence or curvature effects, greatly reduces the large discrepancies found 
between recent experiments on supersonic boundary layers and calculations by 
conventional extensions of successful incompressible-flow methods. 

1. Introduction 
Figure 1, reproduced from Bradshaw & Ferriss (1971), shows a comparison 

between their calculation method and the experiments of Zwarts (1970) in a 
boundary layer decelerating from Me z 4 to Me x 3. Large discrepancies appear. 
This calculation method is an extension of EL successful method for incompressible 
flow (Bradshaw, Ferriss & Atwell 1967; Bradshaw & Ferriss 1972), involving 
Morkovin’s hypothesis (Favre 1964, p. 367) that the effects of density fluctuations 
on the turbulence structure are small in boundary layers a t  non-hypersonic Mach 
numbers. The behaviour of constant-pressure flows is well predicted up to 
Be = 5 at least. Most other calculation methods for compressible shear layers use 
Morkovin’s hypothesis explicitly or implicitly, and would be expected to give 
results for Zwarts’ flow broadly similar to those shown in figure 1.  ‘Eddy 
viscosity ’ methods give rather better predictions of the initial part of the flow 
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FIGURE 1. Experiment of Zwarts. 0, experiment; -, calculation without allowance 
for dilatation; - - - -, c, in zero pressure gradient at same Mach number. 

shown in figure 1, because even in incompressible flow they tend to underestimate 
the decrease in cf caused by a suddenly applied pressure gradient. The pressure- 
gradient parameter (8*/7J dpldx, the ratio of the contributions of pressure 
gradient and of wall stress to the growth of the momentum deficit in the boundary 
layer, reaches a maximum of about 4 in this flow. In  subsonic flow, the prolonged 
application of such a pressure gradient would reduce the skin-friction coefficient 
cf to perhaps half the constant-pressure value: the calculations for Zwarts' flow 
follow the trend expected from subsonic flow behaviour, but the experimental 
values of cf decrease only slightly in the region of adverse pressure gradient and 
then rise, significantly exceeding the constant-pressure value indicated by the 
broken line in figure 1.  

Bradshaw & Ferriss (1971) recognized that the hypotheses on which their 
calculation method was based "would fail in the presence of shock waves and 
expansion fans where the dilatation divU is large", but they did not consider 
that the dilatation found in distributed pressure gradients could seriously affect 
the turbulence structure, because div U is small to the boundary-layer approxi- 
mation. They were inclined to attribute Zwarts' results to the effects of three- 
dimeiisionality in his rather narrow wind tunnel. Most of the other supersonic 
boundary-layer measurements available to Bradshaw & Ferriss had been made 
on highly curved surfaces (used to  induce the required pressure gradient) and, 
because of the uncertainty about the effects of large streamline curvature on 
turbulence structure, were regarded as unsuitable for testing the calculation 
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method. For a discussion, see $ 6  of Bradshaw & Ferriss (1971). Apart from 
Zwarts’ flow the only test cases of strong pressure gradient on flat surfaces 
available to Bradshaw & Ferriss were the accelerated flows of Pasiuk, Hastings & 
Chatham (1964) and of Sivasegaram (1970): although both showed a smaller cr 
than predicted, the evidence was not very conclusive. Since Bradshaw & Ferriss’ 
paper was written, further evidence has accumulated, Bushnell & Alston (1972) 
concluded that discrepancies between calculation and experiment in various 
supersonic flows might not be entirely attributable to known effects such as those 
of surface curvature or normal pressure gradient. The experiments of Peake, 
Romeskie & Brakmann (1972) and of Lewis, Gran & Kubota (1972) on boundary 
layers rather similar to Zwarts’ show similar trends in cf, and calculations show 
similar disagreements with experiment: the measurements of Lewis et al., in 
particular, seem to be of very high quality and free from three-dimensional effects. 
Fluctuation measurements by Behrens (1971) and Rose (1972) in oblique shock/ 
boundary-layer interactions and by Lewis & Behrens (1969) in the shear layer 
emerging from a Prandtl-Meyer expansion have shown unexpectedly large 
increases in turbulence intensity during compression and large decreases during 
expansion, The only obvious explanation of what now seems to be incontrovertible 
experimental evidence is that the mean dilatational rate of strain div U directly 
affects the turbulence structure to  an extent much greater than expected from 
the terms (in, say, the Reynolds-stress transport equations) that contain the 
extra rate of strain explicitly. 

The main apriori reason for believing that compression or dilatation may have 
large effects on the structure of turbulent shear layers is that other extra rates of 
strain have been found to change the Reynolds stresses by an order of magnitude 
more than expected from the size of the explicit extra terms in the Reynolds- 
stress transport equations. In  view of the shortage of turbulence measurements 
in supersonic flow, many of our conclusions about the effects of compression or 
dilatation must be inferred from our knowledge of the effects of other extra strain 
rates in low-speed flows, which are therefore briefly discussed in 5 2 in the general 
context of ‘ complex ’ turbulent flows. 

In  $ 3 of the paper we discuss the exact equations for the transport of Reynolds 
stress in compressible flow, with particular reference t o  the turbulent-energy 
equation used by Bradshaw & Ferriss (1971), Wilcox & Alber (1972) and others, 
We show that an empirical constant in the method of Wilcox & Alber, which they 
adjust to optimize agreement with experiments on turbulent shear layers passing 
through shock waves and expansions, is in fact impossibly large for the term it is 
supposed to represent and should be reinterpreted as an allowance for dilatation 
effects. 

In  § 4 we apply a dilatation correction formula, similar to those successfully 
used to allow for curvature or divergence effects, to the calculation method of 
Bradshaw & Ferriss (1971). Significant improvement in predictions is found, but 
because of the abrupt application or release of pressure gradient in the supersonic 
boundary layers mentioned above it is necessary t o  make a further simple 
allowance for the history of the extra rate of strain, derived from physical argu- 
ments and applicable to any type of extra strain rate. The final calculations show 
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greatly improved agreement wit’h experiment, as good as can be expected since 
the extra strain rates are in some places too large for the rigorous application of 
kst-order correction formulae. The modifications to the computer program are 
minor, and similar allowances for dilatation effects could be incorporated in other 
field calculation methods, including eddy-viscosity methods: Green, Weeks 8: 
Brooman (1 972) have used the above-mentioned correction formula, without the 
allowance for rate-of-strain history, in an integral version of the present calcula- 
tion method. We may note that although the history allowance is in effect a 
differential equation for the eddy length scale, a conventional length-scale 
equation (Bradshaw 19726) will not simulate the effects of extra rates of strain; 
a correction formula is still needed. 

In $ 5  we briefly discuss the physics of dilatation effects, which are largely 
hypothetical because of the lack of turbulence measurements in high-speed flow. 
The analogy with lateral convergence or divergence, due to Dr J.E.Green 
(private communication), is a t  least qualitatively helpful. 

The purpose of the present paper is to convince research workers of the reality 
of the phenomenon, and to encourage engineers to use the method of predicting 
it described herein. It appears to be essential to make some kind of allowance for 
the effects of mean dilatation or compression on the turbulence structure in any 
calculation method for supersonic shear layers (the effects are negligible at  Mach 
numbers significantly less than unity). The phenomenon may be important in 
turbulent flows other than shear layers: in turbulent combustion the ‘mean’ 
dilatation can be of the same order as the fluctuating rate of strain in the larger 
eddies. 

2. ‘Complex’ turbulent flows 
It is helpful to divide turbulent flows with significant Reynolds-stress gradients 

into (i) simple shear layers and (ii) complex flows. 
We define a simple shear layer as one which has a monotonic velocity (strictly, 

with a shear stress of one sign everywhere) and in which extra strain rates are so 
small compared with the velocity gradient (aU/dy in the usual notation) that they 
do not significantly affect the turbulence. Because the effect of extra strain rates 
is or can be an order of magnitude larger than expected from their explicit 
appearances in the equations, the extra strain rates permissible in a simple shear 
layer are generally an order of magnitude smaller than those permitted by the 
thin-shear-layer (boundary-layer) approximation, which is a condition on the 
relative size of explicit terms. 

Complex turbulent flows include interacting shear layers, such as occur in ducts 
or jets, and shear layers perturbed by extra rates of strain : a composite type is a 
shear layer undergoing a change of species (e.g. from a free mixing layer to a 
boundary layer or vice versa). As a rule, calculation methods for simple shear 
layers cannot satisfactorily predict the effects of asymmetrical interactions or 
extra strain rates on turbulence structure without extra hypotheses or empirical 
information: for general reviews see Bradshaw (1972a, 1973a, b ) .  Here we are 
concerned with extra strain rates: it  is convenient to define small extra strain rates 
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as those permitted by the thin-shear-layer approximation, so that each extra 
strain rate e satisfies 

e < aU/dy, 

where representative rather than local values are understood, and where we 
consider only two-dimensional flows, for simplicity. Large extrastrain rates violate 
the thin-shear-layer approximation and the above inequality; however it appears 
(Castro 1973; Bradshaw 1973a, b)  that nearly all flows in which Reynolds-stress 
gradients are significant obey what may be called the fairly-thin-shear-Zayer 
approximation. To this approximation the effect of Reynolds stresses on the 
variation of total pressure along a streamline is due principally to the transverse 
shear-stress gradient referred to axes along and normal to the streamline; normal- 
stress gradients are small enough for liberties to be taken in calculating them, 
although they may not be negligible as they are in thin shear layers. This is a 
useful simplification in the development of calculation methods. The real distinc- 
tion between small and large strain rates is therefore not the applicability or 
otherwise of the thin-shear-layer approximation to the Reynolds-stress gradients 
but the validity or otherwise of first-order empirical correlations of the effects of 
extra strain rates on the turbulence structure. This point is particularly relevant 
in supersonic flows, in which shocks and expansions can produce large local extra 
strain rates in predominantly thin shear layers. 

The simplest parameter by which to correlate the effects of an extra strain rate 
e is the rate-of-strain ratio e/(aU/ay) or, a rough equivalent, the ratio of e to a 
typical fluctuating strain rate of the larger eddies, say eL/( - E)i, where L is an 
eddy length scale such as the dissipation length parameter. The extra strain rate 
explicitly changes the sum of the ‘generation ’ terms in an exact Reynolds-stress 
transport equation (e.g. the production term in the turbulent energy equation) 
by a factor which may be written generally as 

where la1 is of order unity (being a ratio of Reynolds stresses) and depends on the 
form of e. It is found that the implicit effect of almost any extra strain rate on the 
‘destruction’ terms (e.g. the turbulent energy dissipation) is larger than this by 
an order of magnitude: we call it an implicit effect because the destruction terms, 
unlike the generation terms, do not contain e explicitly. This suggests that the 
effect of extra strain rates should be represented in transport-equation calcula- 
tion methods by dividing (for convenience) the empirical form of the ‘ destruction ’ 
terms by a factor 

e P =  l+a- a ulay 
where I a I is an order of magnitude greater than unity and depends on the form of e .  

It should be noted that the effect of extra strain rates on the turbulence 
structure of a shear layer is of the opposite sign to, as well as an order greater 
than, the effect of a strain rate on initially isotropic turbulence predicted by 
rapid-distortion theory. According to Crow’s (1968) version of the theory, the 
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pressure-strain term in the Reynolds-stress transport equation acts to oppose 
the explicit generation terms, but the effects described above imply that the 
pressure-strain term usually adds overwhelmingly to the explicit terms. 
Evidently the effects of extra strain rate depend critically on the structure of 
the turbulence set up by the primary rate of strain aU/ay. 

Since a is large thef-factor ( 1 )  is much closer to unity than the P-factor ( 2 )  and, 
to the local-equilibrium approximation, we can either divide the destruction 
terms by P or multiply the generation terms by P. The effects of extra strain 
rates on turbulent transport terms are not well understood at present, so it is not 
possible to advance beyond a local-equilibrium discussion. All the above remarks 
apply equally to transport equations for turbulent energy dissipation or other 
quantities implying a length scale. In a thin shear layer, where by definition 
e < aU/ay (small extra strain rates), there is usually no point in making F a non- 
linear function. Various alternative plausibility arguments can be constructed 
for (2): for instance, in the case of streamline curvature (e = aV/ax) ,  the rate-of- 
strain ratio in ( 2 )  is to first order equal to half the ‘Richardson number’ 
(analogous to the well-known buoyancy parameter: see Bradshaw 1973a), and 
( 2 )  is analogous to the Monin-Obukhov factor. In  a calculation method based on 
the mixing-length formula, the rough correspondence between the mixing length 
and the dissipation-length parameter used in empirical modelling of the energy 
dissipation term suggests that the mixing length should be multiplied by a 
factor F ;  the eddy viscosity should be multiplied by a factor close to P2. 

Correction factors like (2), with la/ z 10, have been used in several methods for 
calculating flows with streamline curvature, lateral convergence or divergence.? 
In  convergence or divergence in the plane of the mean shear ( e  = aV/i3y), a seems 
to be rather smaller: the function of production/dissipation used by Rodi (1972)  
as a correction factor in his calculation method for free shear layers can be related 
to ( 2 )  with e = aV/@,  because the large growth rate of jets and mixing layers 
implies both a significant value of aV/ay and an excess of production over 
dissipation. Nonlinear versions of ( 2 )  have been used for larger extra strain rates 
(e.g. So & Mellor 1972) but it appears, partly as a result of the present investigation 
of suddenly applied compression and dilatation rates, that a more necessary 
improvement is an allowance for the history of the extra strain rate. Such an 
allowance would be provided automatically by a length-scale transport equation, 
but in the present work we have used an empirical first-order ordinary differential 
equation for a, with a ‘time constant ’ (relaxation length) of 108 in conformity 
with traditional estimates (Townsend 1956, p. 189) of the response time of the 
energy-containing eddies. It is convenient to write the equation in terms of the 
effective value of ae, E say: then 

1OSdEldx = a,e-E, ( 3 )  

where a,, is the asymptotic value of a, reached after prolonged application of the 
extra strain rate. Note that this ignores the small extra generation terms, repre- 
sented by (l), which vary directly with the local strain rate. The empirical linear 

t It is not  known whether skew ( e  = aW/ax) has large effects; in this case, symmetry 
would require F to be an even function of e.  



Mean compression effects in turbulent boundary layers 455 

equation (3) is no more a law of nature than the empirical linear ‘F-factor’ (2), 
but both are simple representations of undoubted physical effects and have been 
used successfully in predictions for suddenly applied curvature (Bradshaw 
1973 a),  lateral divergence (Young, unpublished work at Imperial College) and 
dilatation (see below). 

We proceed to discuss the special case of compression or dilatation in a thin 
shear layer. We shall see that the apriori expectation that this extra strain rate, 
like others, produces large effects on turbulence structure is indirectly confirmed 
by the success of a correction formula based on (2) and (3). 

3. Analysis 
The exact equations for the rate of change of Reynolds stresses with time, 

following the mean motion of the fluid, all contain terms expressing the generation 
of Reynolds stress by interaction of the turbulence and the mean rate of strain, 
destruction of Reynolds stress by pressure fluctuations or viscous action, and 
spatial transport of Reynolds stress by velocity fluctuations, pressure fluctuations 
or viscous action. Although our main interest is in the shear stress, the turbulent 
energy equation for the sum of the normal stresses behaves similarly, is easier to 
discuss and better documented experimentally, and is used in the calculation 
methods of Bradshaw & Ferriss, Wilcox & Alber and others. 

Bradshaw & Ferriss (1971), using tensor suffix notation and conventional time 
averages of velocity so that the mean value of the fluctuating velocity Ti, is zero, 
give the equation for the turbulent energy per unit volume as 

qa(&pui+ &Z&/ax, = - (pi& +piuiu,) au,/ax, 
(ii) 

- -  (i) 

- a ( p 5  + +puquj + +p’uquj)/axi -viscous diffusion and dissipation 
(iii) (iv) 

In incompressible flow terms (v)-(vii) disappear, and the elements of the energy 
production term (ii) for which i = j almost cancel because div U E aq./ax, = 0. 
Terms (i) and (vi) combine t o  give 

so that the mean dilatation aL$/ax, does not appear explicitly in the equat,ion for 
the turbulent energy per unit muss, Quf. Bradshaw & Ferriss showed that (vii) 
should be small compared with the pressure term in (iii) and therefore negligible 
in most practical cases, They retained part of (v), the turbulent mass flux times 
t,he mean acceleration, neglecting the contribution of the pressure gradient to the 
mean acceleration: they also neglected the normal-stress elements of (ii), which 
sum to rather less than - &iq aC$/axj and should therefore be small in a weak 
pressure gradient. Bradshaw & Ferriss assumed that these small terms in the 

- 
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turbulent-energy equation would have little influence on a flow dominated by 
strong pressure gradients: unfortunately this is true only in the letter and not in 
the spirit because these are the terms which contain the dilatation. The neglected 
part of (v), (p’ui/p) ap/ax,, closely equal to (p‘ulp) @/dx in a thin shear layer, can 
be estimated by using Morkovin’s ‘strong Reynolds analogy ’, which implies that 
the instantaneous total temperature is constant and the pressure fluctuations 
negligibly small. This leads to 

( 5 )  

so that p’u E (y -  1) M 2 s / U .  In  the free stream, the continuity equation and 

(6) the gas laws give 

which should be an adequate approximation within the shear layer because errors 
will be appreciable only near the surface, where div U/(aU/ay) is small. Taking 

the pressure-gradient part of (v) for a gas with y = 1-4 is 

- 

p’/P E (7- 1) M2U/U, 

div U = - (U/y@) dpldx, 

u2 = - q 2 z 2 . 5 2 ,  we find that the sum, T, say, of the normal-stress part of (ii) and 
- -  

- U d p  T, x -0-5ppdivU M 0*5q2--  
a2 dx  ’ 

where a is the speed of sound. The result should be accurate to about one signifi- 
cant figure. Now the main production term in a thin shear layer is (ii) with i = 1 
and j = 2, or - p Z  a U/ay if we use ordinary notation and neglect the density 
fluctuations. Using Bradshaw & Ferriss’ approximation -uV x 0.15q we see 
that the ratio of the dilatation terms to the main production terms is about 
3 div U/(aU/ay). 

Wilcox & Alber write the turbulent-energy equation in terms of mass-weighted 
averages and the pressure-gradient part of (v) appears explicitly. They follow the 
above estimate of the dilatation terms T,, but replace the factor 0.5 with an 
empirical constant 86: to secure agreement with experiment they put 5 = 2.5-2-7; 
that is, the effects of dilatation are simulated by increasing the explicit dilatation 
terms T, by a factor of about 2.6. Wilcox & Alber do not mention that this is an 
unphysically large value for q. The effect of Wilcox & Alber’s procedure is the 
same as neglecting the dilatation terms and multiplying the main production 
term by div U P =  1-8- a u/ay , 
a special case of (2). No great significance is attached to the numerical constant 
because Wilcox & Alber use the turbulent energy only as part of an eddy viscosity, 
but it is safe to deduce that the effects of dilatation and compression on the 
turbulence structure of the shock and expansion flows used to calibrate Wilcox 8: 
Alber’s method was considerable. For the sake of retaining a positive value of u, 
as in the cases e = aV/ax and e = a Wlaz, we shall regard a compressive strain rate 
as positive: e = - div U. 

In  the free stream of a two-dimensional flow, 

div u = a uiax + a vlay = ~2 a upx w a v /ay  

if M is large compared with unity. As mentioned in $2 the effects of 8 V/ay as such 
seem to be rather smaller than those of other extra strain rates: negative aV/ay, 
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alone, appears to reduce the shear stress, while positive a W/&, associated with 
negative aV/ay by the continuity equation, increases the shear stress. The effects 
of aV/ay, as such, and those of divU will coexist, but it is simpler to correlate 
entirely in terms of div U in compressible flow. 

4. Modifications to the method of Bradshaw & Ferriss 
Wilcox & Alber did not publish comparisons of their method with any of the 

recent measurements of boundary layers in distributed pressure gradients, so 
that as a further test of the applicability of (1) we made a modification, similar to 
that described by (S), t o  the method of Bradshaw & Ferriss. This method uses 
the assumption of a one-to-one correspondence between the shear-stress profile 
and the profile of any other turbulence quantity to convert the turbulent energy 
equation into an empirical transport equation for the shear stress. The process is 
broadly similar to Wilcox & Alber’s modelling of the turbulent-energy equation 
except that the shear stress is related to the turbulent energy directly and not via 
an eddy viscosity. Wilcox & Alber solve a second transport equation to provide an 
eddy length scale but Bradshaw & Ferriss assume that the dissipation length 
scale L appearing in their empirical equation for the shear stress is given by 
L/S = f(y/8), where f is an empirical function. In  the local-equilibrium approxi- 
mation (Townsend 1961) L becomes equal to the apparent mixing length. 
Bradshaw & Ferriss’ final equation for -G, with the true dilatation terms 
obtained from (7) ,  is 

where a, = -G/p NN 0.15 and where the main production term is the h t  term 
on the right. The correction for dilatation consists of dividing the dissipation 
term by P from (2 ) .  To the local-equilibrium approximation and the first order 
in rate-of-strain rates, this is equivalent to subtracting a( - UV) div U from the 
right-hand side of (9) and, for simplicity, we adopt this approximation and also 
absorb 0-5/a1 into a. In  the present computer program we have approximated 
div U by - (U/yj i )  dpldx. 

Figure 2 shows calculations? for the retardedlaccelerated flow of Lewis et al., 
for a: = 0 , 6 , 7  and 10. Note that in this case the surface shear stress follows the 
qualitative trend familiar from low-speed flows, with a decrease in the adverse 
pressure gradient and an increase in the favourable pressure gradient. However, 
the unmodified calculations (a = 0 in figure 2) lie well below the data, as in 
Zwart’s flow (figure 1) .  Figure 2 shows rough values of the pressure-gradient 
parameter (8*/7,) @/dx and of div U/(aU/@), taking aU/ay = O-3Ue/6 as a typical 
value in the middle of the boundary layer: to this approximation 

div U/( aU/ay) = 3x3 U,/S) dU,/dx, 

7 The Reynolds number of the experiment was rather low: the Reynolds-number 
correction factor used in the program was adjusted to give agreement with the constant- 
pressure results of Lewis et al. 
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FIGURE 2.  Experiment of Lewis et al. -@--, mean line through data; -, calculations 
without allowance for dilatation. Calculations with algebraic equation (2) for dilatation: 
V, CL = 5; '1. a = 7;  x , CL = 10. Div U/(aU/ay) reaches about -0-1 in the retarded region, 
0.14 in the region of acceloration. 

showing that the effects of dilatation vary roughly as MZ. The general trend of 
the calculations is improved by the empirical correction for dilatation, but a 
value of a large enough to give the right maximum cf predicts a rise in cf right 
from the start of the adverse pressure gradient, and cf decreases again as soon as 
the pressure gradient becomes favourable. Evidently the full effect of dilatation 
on the turbulence structure is not felt as soon as the dilatation begins: presumably 
the initial effect is that of the real increase in the generation terms, while the effect 
of the empirically added term, representing a change in the turbulence structure, 
increases gradually. Similar effects have been found on surfaces with sudden 
changes of curvature by Thomann (1968) a.nd by Young in unpublished work at 
Imperial College. 

Further calculations, including a comparison with the measurements of Winter, 
Rotta & Smith (1968) on a waisted body of revolution, have been done by Green 
et al. (1972). Again, significant improvements were found when an allowance for 
dilatation, based on (2) with a = 7, was made. 

Figure 3 shows the effect of using the 'lag equation' (3) for the effective value 
of - a divU (actuallyfor the effective value of a( llyj5) dpldx, which is independent 
of y). a, was taken as 10. There is clearly a further improvement, although cf 
(figure 3a) still falls more rapidly than it should in the region of favourable 
pressure gradient, suggesting that a should be smaller, or the relaxation distance 
larger than 106, when div U is positive than when it is negative. Similar effects, 
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FIGURE 3. Experiment of Lewis et al. ( a )  Surface shear-stress. -@-, experiment; - .-.-., 
calculation with rate equation (3 )  for effective value of ae in (Z), a, = 10. ( b )  Shear-stress 
profile at  x = 21.5 in. -@-, experiment (from total-pressure profiles); ----, calculation 
as in (a). 

in the opposite sense, are found in curved flows, where the best-straight-line 
approximations imply that a M 14 in stable situations and a M 8 in unstable 
situations. However, some of the assumptions made in the calculation method of 
Bradshaw & Ferriss (1971) are valid only if ( y  - 1)  M 2  is not much greater than 
unity, and this condition is poorly satisfied in the outer layer of a boundary layer 
with Me M 4. Moreover the values of div U/(aU/ay) in the flow of Lewis et al. are 
rather too large for the confident application of any first-order formula through- 
out the layer: however, it is well known that the outer region of a boundary layer 
in a strong pressure gradient is dominated by pressure gradients rather than 
Reynolds-stress gradients; in the inner layer, where Reynolds-stress gradients 
are more important, div U/(aU/ay)  is smaller because aU/ay is larger. The present 
formula does appear to give tolerably good results in the outer layer even in the 
flow of Lewis et al., partly because the full effects of an extra strain rate are felt 
only if it is applied for a downstream distance of many boundary-layer thick- 
nesses, a phenomenon here crudely represented by (3). 
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FIGURE 4. Experiment of Pasiuk et a2. --El--, experiment (from logarithmic profiles); 
. experiment (from momentum integral); -, calculation without allowance for dilata- 

tion; - .-. , calculation with allowance for dilatation, (2) with a = 7. 

Figure 3 ( b )  shows the calculated shear-stress profile a t  x = 21-6in. together 
with that obtained from the experimental total-pressure profiles via the useful but 
apparently little-known expression 

”=”(?) , 
8~ P ax streamline 

which is exact if the total temperature is constant. It was not possible to measure 
aPl8x with any accuracy in the region of rapid change between x = 17in. and 
19in. but the shear stress in mid-layer appears to be at  least five times larger at  
x = 17 in. than at x = 21.5in.: the calculated values of 7max/Pe U i  were 0.0021 at  
x = 17in. and 0.0018 a t  x = lgin., both at  about y/6 = 0.5. The fall to less than 
0.0005 at  y/6 = 0.5 by x = 2 1.5 in. represents a fourfold decrease in a streamwise 
distance of 108. 

Calculations for the experiments of Pasiuk et al., Peake et al., Zwarts and 
Waltrup & Schetz (1972) are shown in figures 4-7. The Pasiuk calculation was 
done early in the investigation, with a,, = 7: a much larger value would be needed 
to achieve agreement with values of cf deduced from the logarithmic part of the 
velocity profiles. The evidence from this experiment and from the accelerated 
part of the flow of Lewis et al. is therefore contradictory: in the absence of other 
evidence we must follow Wilcox & Alber’s lead and use the same empirical 
constants for both signs of div U. The results for the retarded flows of Peake et al. 
and of Zwarts, both with a = 10, seem satisfactory, the remaining discrepanclies 
being in opposite directions in the two experiments. The results for the retarded 
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FIGURE 6. Experiment of Zwarts. ----- , calculation with allowance for dhta t ion ,  
(2) and (3) with a, = 10. For rest of legend see figure 1. 

flow of Waltrup & Schetz are less satisfactory but may at least be taken as further 
qualitative evidence for dilatation effects. 

The correction for compression and dilatation effects represented by (2) and (3),  
with a, = 10 as the asymptotic value of the empirical constant a in (2), is offered 
as a simple and convenient package for insertion into other calculation methods. 
It is nominally limited to cases where divU is small compared with aU/@ or 
( - uw)t/L, because there is no reason to expect (2) to remain linear for large strain 
- 
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rates. Also, the allowance for rate-of-strain history (3) is clearly a crude approxi- 
mation to what should strictly be a partial differential equation. However, any 
improvements on (2) and (3) may have to be too closely integrated with a given 
calculation method to be easily applicable in general. The current version of 
Bradshaw & Ferriss' calculation method contains an extension of (2) and (3) to 
cope with several types of extra strain rate a t  once: (2) and (3) appear to give 
tolerably good results even in flows with short regions of 1a.rge extra strain rate 
(' strain impulses ') for reasons explained earlier in this section. 

5. Physics of dilatation effects 
There is no direct evidence for the mechanism by which dilatation reduces, and 

compression increases, the turbulence intensities. Dr J. E. Green has pointed out 
to me that compression in the x, y plane increases the z component of vorticity 
in the same way as lateral divergence: both influences cause a reduction in cross- 
sectional area of a fluid element in the x, y plane and thus, if angular momentum 
is conserved, an increase in vorticity. Div U is equivalent to - a W/&. There are 
bound to be detailed differences in the mechanisms, but a qualitative corre- 
spondence seems almost certain and lends credence to the empirical arguments of 
§ 3. Unfortunately the effects of lateral divergence are themselves not well under- 
stood: lateral divergence increases the mean vorticity as well as the fluctuating 
vorticity, so it is not immediately obvious why the Reynolds stresses should differ 
greatly from those predicted by, say, a conventional eddy viscosity. Keffer (1965, 
1967) has found that the large eddies in a wake, which have a strong z com- 
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ponent of vorticity in any case, are amplified by divergence while the smaller 
eddies, being morenearly isotropic, areif anything suppressed. It seems likely that 
the same effects occur in a boundary layer. Keffer found that lateral convergence 
apparently had little effect but the measurements of Patel, Nakayama & Damian 
(1974) near the tail of a body of revolution suggest that convergence produces 
effects of the same order as divergence, but of the opposite sign. Nothing can be 
inferred from this about the equality or otherwise of the optimum values of cc for 
compression and dilatation, and further speculation in the absence of evidence is 
unlikely to be helpful. 

6.  Conclusions 
Comparisons with recent, well-conducted measurements on supersonic 

boundary layers in moderate or strong pressure gradients have revealed large 
inaccuracies in conventional calculation methods. The evidence suggests that 
bulk compression or dilatation, div U, has a much greater effect on the turbulence 
structure of a shear layer than is expected from the size of the extra terms, in the 
Reynolds-stress transport equations or other turbulence equations, which 
explicitly contain div U. This behaviour has previously been found in the case 
of other ‘extra strain rates’ such as lateral divergence or longitudinal curvature 
of the streamlines, and an analogy can by drawn between the effects of com- 
pression and of lateral divergence on the cross-sectional area, in the plane of the 
mean shear, of a fluid element or vortex line. An empirical correction formula of a 
type found satisfactory in predicting the effects of divergence or curvature 
significantly improves agreement between the calculation method of Bradshaw & 
Ferriss (1971) and experiment, A new feature, found in the present work on 
suddenly applied pressure gradients and in unpublished work at  Imperial College 
on suddenly applied curvature and divergence, is that the correction formula is 
much improved by an allowance for rate-of-strain history, in addition to any 
such allowance in the basic calculation method. 

Although the picture of the phenomenon offered in this paper has been pieced 
together from indirect arguments, analogies and empirical modifications of an 
empirical calculation method, there seems little doubt that an unexpected effect 
of dilatation on shear-layer turbulence exists, and that it must be allowed for in 
engineering calculation methods for supersonic shear layers. The correction 
formula suggested here could be applied to most types of calculation method. 

From the fundamental viewpoint, the addition of another member to the 
family of unexpectedly powerful extra strain rates enhances the importance of 
‘ complex ’ turbulent flows as a research topic, and further degrades the status 
of the simple shear layer as a sufficient source of information about turbulence 
structure. We cannot expect extensive data on turbulence structure in supersonic 
flow to appear in the near future, but this increases the need for experiments on 
more tractable examples of extra strain rates. 

I am grateful to Dr R. L. Gran of TRW Systems Group for tabulations of the 
data of Lewis, Gran & Kubota, to Dr J. E. Green of RAE Bedford for helpful 
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National Aerospace Laboratory, Tokyo (while a t  Imperial College) for help with 
the data analysis, and to the Ministry of Defence Procurement Executive 
(formerly Ministry of Technology) for partial support under Agreement 
$T/2037/102. 
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